15,038 research outputs found

    Supporting development for the preliminary design of an intermediate water recovery system

    Get PDF
    Supporting development of experimental design for water recovery syste

    Object-Oriented Paradigms for Modelling Vascular\ud Tumour Growth: a Case Study

    Get PDF
    Motivated by a family of related hybrid multiscale models, we have built an object-oriented framework for developing and implementing multiscale models of vascular tumour growth. The models are implemented in our framework as a case study to highlight how object-oriented programming techniques and good object-oriented design may be used effectively to develop hybrid multiscale models of vascular tumour growth. The intention is that this paper will serve as a useful reference for researchers modelling complex biological systems and that these researchers will employ some of the techniques presented herein in their own projects

    Study of Civil Markets for Heavy-Lift Airships

    Get PDF
    The civil markets for heavy lift airships (HLAs) were defined by first identifying areas of most likely application. The operational suitability of HLAs for the applications identified were then assessed. The operating economics of HLAs were established and the market size for HLA services estimated by comparing HLA operating and economic characteristics with those of competing modes. The sensitivities of the market size to HLA characteristics were evaluated and the number and sizes of the vehicles required to service the more promising markets were defined. Important characteristics for future HLAs are discussed that were derived from the study of each application, including operational requirements, features enhancing profitability, military compatibility, improved design requirements, approach to entry into service, and institutional implications for design and operation

    Oscillatory dynamics in a model of vascular tumour growth -- implications for chemotherapy

    Get PDF
    Background\ud \ud Investigations of solid tumours suggest that vessel occlusion may occur when increased pressure from the tumour mass is exerted on the vessel walls. Since immature vessels are frequently found in tumours and may be particularly sensitive, such occlusion may impair tumour blood flow and have a negative impact on therapeutic outcome. In order to study the effects that occlusion may have on tumour growth patterns and therapeutic response, in this paper we develop and investigate a continuum model of vascular tumour growth.\ud Results\ud \ud By analysing a spatially uniform submodel, we identify regions of parameter space in which the combination of tumour cell proliferation and vessel occlusion give rise to sustained temporal oscillations in the tumour cell population and in the vessel density. Alternatively, if the vessels are assumed to be less prone to collapse, stable steady state solutions are observed. When spatial effects are considered, the pattern of tumour invasion depends on the dynamics of the spatially uniform submodel. If the submodel predicts a stable steady state, then steady travelling waves are observed in the full model, and the system evolves to the same stable steady state behind the invading front. When the submodel yields oscillatory behaviour, the full model produces periodic travelling waves. The stability of the waves (which can be predicted by approximating the system as one of λ-ω type) dictates whether the waves develop into regular or irregular spatio-temporal oscillations. Simulations of chemotherapy reveal that treatment outcome depends crucially on the underlying tumour growth dynamics. In particular, if the dynamics are oscillatory, then therapeutic efficacy is difficult to assess since the fluctuations in the size of the tumour cell population are enhanced, compared to untreated controls.\ud Conclusions\ud \ud We have developed a mathematical model of vascular tumour growth formulated as a system of partial differential equations (PDEs). Employing a combination of numerical and analytical techniques, we demonstrate how the spatio-temporal dynamics of the untreated tumour may influence its response to chemotherapy.\ud Reviewers\ud \ud This manuscript was reviewed by Professor Zvia Agur and Professor Marek Kimmel

    A note on heat and mass transfer from a sphere in Stokes\ud flow at low PĂ©clet number

    Get PDF
    We consider the low Péclet number, Pe ≪ 1, asymptotic solution for steady-state heat and mass transfer from a sphere immersed in Stokes flow with a Robin boundary condition on its surface, representing Newton cooling or a first-order chemical reaction. The application of van Dyke’s rule up to terms of O(Pe3) shows that the O(Pe3 log Pe) terms in the expression for the average Nusselt/Sherwood number are double those previously derived in the literature. Inclusion of the O(Pe3) terms is shown to increase significantly the range of validity of the expansion

    Modelling the response of vascular tumours to chemotherapy: A multiscale approach

    Get PDF
    An existing multiscale model is extended to study the response of a vascularised tumour to treatment with chemotherapeutic drugs which target proliferating cells. The underlying hybrid cellular automaton model couples tissue-level processes (e.g. blood flow, vascular adaptation, oxygen and drug transport) with cellular and subcellular phenomena (e.g. competition for space, progress through the cell cycle, natural cell death and drug-induced cell kill and the expression of angiogenic factors). New simulations suggest that, in the absence of therapy, vascular adaptation induced by angiogenic factors can stimulate spatio-temporal oscillations in the tumour's composition.\ud \ud Numerical simulations are presented and show that, depending on the choice of model parameters, when a drug which kills proliferating cells is continuously infused through the vasculature, three cases may arise: the tumour is eliminated by the drug; the tumour continues to expand into the normal tissue; or, the tumour undergoes spatio-temporal oscillations, with regions of high vascular and tumour cell density alternating with regions of low vascular and tumour cell density. The implications of these results and possible directions for future research are also discussed

    Effective Stress Liquefaction Analysis at the Wildlife Site

    Get PDF
    An incremental stress-strain model for granular soils based on fundamental soil mechanics principles is presented. The model captures the drained skeleton behavior observed in laboratory tests under cyclic loading. The undrained behavior is captured using the same skeleton stress-strain relation together with the volumetric constraint imposed by the pore water fluid. The model predicts cyclic simple shear response in close agreement with observed cyclic test data in terms of pore water pressure rise, cycles to trigger liquefaction, as well as the characteristic post-liquefaction response. Finally, the model is incorporated in a dynamic analyses procedure and applied to the field case history recorded at the Wildlife site. The recorded downhole time history was used as input and the predicted response compared with the field observation. In general, the agreement is good except for the pore water pressure response, which showed a more rapid rise than was observed
    • …
    corecore